
Gertjan Franken, Tom Van Goethem, Wouter Joosen

Reading Between the Lines:
An Extensive Evaluation of the Security and
Privacy Implications of EPUB Reading Systems

3.2

XHTML

CSS

JavaScript

2

.EPUB (.ZIP)

EPUB file

EPUB
reading system

3.2
Remote

resources

• A resource that is located outside of the
EPUB Container, typically, but not necessarily,
online.

• Security considerations
• User consent or notification for network activity
• Only rendering, no content access (SOP)

file:// http://

3

Research
questions

• What is the state of freely available EPUB reading
systems?

• Are these capabilities being (ab)used in the wild?

Malicious EPUBs Tracking EPUBs

Granted capabilities Security considerations

4

Research
questions

• What is the state of freely available EPUB reading
systems?

• Are these capabilities being (ab)used in the wild?

Malicious EPUBs Tracking EPUBs

Granted capabilities Security considerations

5

97 reading
systems

15 39

35 20

5 5

Desktop apps (27)

Mobile apps (55)

Browser extensions (10)

Physical e-readers (5)

6

Semi-automated black-box evaluation

7

JavaScript execution

Remote communication

Web engine evaluation

URI schemes

Feature access

Persistent storage

Local file system access

GitHub repo: https://github.com/DistriNet/evil-epubs

1) JavaScript support

Backward compability
• E.g. ECMAScript 5 instead of 6

8

<html>
<p id=’msg’>No JS execution</p>
. . .
<script>

document.getElementById(’msg’).innerHTML = “JS was executed!!!”;
</script>
. . .

</html>

<html>
<p id=’msg’>No JS execution</p>
. . .
<script src=‘../js/change_p.js’></script>
. . .

</html>

Inline External

2) Remote communication

• HTTPLeaks [1]
• Comprehensive set of HTML tags to initate requests
• Server-side check

• Consent flow / notification
• Client-side check

9[1] Cure53. HTTPLeaks. https://github.com/cure53/HTTPLeaks, 2019.

https://

3) Local file system access

• Inference of file existence
• Rendering

• <iframe>, , <audio>, <video>, etc.
• onLoad event

• Timing attack
• XmlHttpRequest, Fetch,
• onError event

• File System in Userspace (FUSE)

• Leak file contents
• XmlHttpRequest, Fetch
• <canvas> to convert to base64
• <iframe> contentWindow attribute

10

.html

.txt

.log

.bogus

.png

.jpg
.mp3
.mp4

.ttf

file:/// protocol
- Direct link
- Symbolic file link (UNIX)
- Symbolic folder link (UNIX)

file:///
file:///

4) URI schemes (not in included in EPUB 3.2 spec)

• Official URI schemes [1]
• mailto:gertjan.franken@kuleuven.be
• tel:+32XXXXXXXX

• Custom URI schemes
• twitter://status?status_id=XXXXXXXXX
• ms-word://distrinet.cs.kuleuven.be

11

[1] Internet Assigned Numbers Authority (IANA). Uniform resource identifier (uri) schemes.
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

consent flow?

Reading
system

Target
app

elem.click();

mailto:gertjan.franken@kuleuven.be
tel:+32XXXXXXXX

5) Web engine evaluation

• User-agent string

• Engine fingerprinting based on MDN dataset [1]
• Supported HTML tags and attributes
• Supported JavaScript API

• Match known browser engine with unknown browser engine based
on hamming distance between two fingerprints

12

<a>
<abbr>
<acronym>
<address>
<applet>
<area>
<article>
<aside>
<audio>

<base>
<basefront>
<bdi>
<bdo>
. . .

1
0
0
0
1
0
1
1
0
1
0
0
1
1

[1] MDN’s browser compatibility dataset. https://github.com/mdn/browser-compat-data.

+/- 3000

Results (1)

Desktop Smartphone Browser E-reader Total
JavaScript
execution 13 (48%) 22 (40%) 3 (30%)* 1 (20%) 39 (40%)

Remote
comm.** 15 (56%) 20 (36%) 10 (100%) 1 (20%) 46 (47%)

13

* Prevented by Content Security Policy
** Only 1 application requires user consent (Apple Books on iOS)

Results (2)

Desktop Smartphone * Browser ** E-reader Total
Infer existence
of local files 10 (37%) 6 (11%) 0 0 16 (16%)

Read content
of local files 5 (19%) 3 (5%) 0 0 8 (8%)

14

* Thanks to iOS design, no applications leaked local file system information
** SOP prevented access to local file system

Results (3)
Desktop Smartphone Browser E-reader Total

URI handles 4 (15%) 10 (18%) 10 (100%) 0 24 (25%)
Insecure
web engine 2 (7%) 0 * 0 * 1 (20%) 3 (3%)

15

* Embedded web engine updated automatically

16

Case studies
• Apple Books

• EPUBReader (Chrome and Firefox
extension)

• Amazon Kindle

17

Case studies
• Apple Books

Sym link validation issue
à persistent DOS
à user information disclosure

• EPUBReader (Chrome and Firefox
extension)

CSP circumvention + <all_urls>
permission
à universal XSS

• Amazon Kindle
Input validation issue + publicly known
vulnerability (10 year old WebKit)
à information leaking

Research
questions

• What is the state of freely available EPUB reading
systems?

• Are these capabilities being (ab)used in the wild?

Malicious EPUBs Tracking EPUBs

Granted capabilities Security considerations

18

Capability (ab)use in the wild

19

BOOK

Capability (ab)use in the wild

• Malicious EPUBs distributed
through illegal channels
• The Pirate Bay, 4shared
• +/- 9,000 EPUBs

20

< 1% contained JavaScript (all benign) BOOK

Capability (ab)use in the wild

21

• Tracking EPUBs distributed
through legal channels
• Free e-books from the most

popular EPUB vendors

No indications of tracking

Feasibility of e-book distribution

22

Distributing your malicious e-book
through file sharing platforms

Distributing your malicious e-book
through official e-book vendors

Self-publishing
services!

Are self-published EPUBs
sufficiently sanitized?

23

Manuscript Publication

AuthorEarnings. February 2017 Big, Bad, Wide & International Report: covering Amazon, Apple, B&N, amd Kobo ebooks sales in de US, UK, Canada,
Autralia, and New Zealand. https://web.archive.org/web/ 20190218084936/http:/authorearnings.com/report/february-2017/.

94%

Key takeaways

24

• Almost none of the JS-supporting reading systems adhere to security
recommendations
• Significant part does not sufficiently isolate local file system
• Responsible disclosure: developers of 37 reading systems contacted

• No abuse in the wild detected (as of yet)
• Although very possible, even through legitimate channels

• Evaluation testbed is open-source [1]
• Assist EPUB reading system developers
• Provide transparency to users

[1] https://github.com/DistriNet/evil-epubs

EPUB 3.2 concerns (1)

• JavaScript execution:
• Our real-world study showed minor usage -> limited usability impact
• Greatly increases attack surface -> huge security impact

• Prohibit JavaScript execution?
• Could be recommended as default setting à modifiable by user?
• User consent requirement?

• Remote resources
• Local file system -> implies ability to read user file system

• Huge security impact, limited usability impact?
• What are the use-cases?

• Online -> implies ability to leak collected information
• Huge security impact
• What are the use-cases?

25

EPUB 3.2 concerns (2)

• URI schemes
• Performing malicious actions via installed applications
• E.g. Skype 4 Business on MacOS + tel:xxxxxxxx à initiate call without user

interaction

• Embedded web engine configuration
• Awareness of unintentionally inherited engine functionality

• E.g. URI schemes, GeoLocation, MediaDevices
• Overrides of security defaults

• E.g. --allow-file-access-from-files, --disable-web-security
• Updating frequently

26

EPUB 3.2 concerns

tel:xxxxxxxx

EPUB 3.2 concerns (3)

• Hard / strict requirements instead of recommendations
• At the time of the evaluation, only a few reading systems adhere to the

recommendations

• Creating awareness among users and developers
• Compliance checker?
• Practical developer guidelines?

• E.g. how to correctly configure embedded web engine

27

